Mathematics I Year

Paper 1

S.NoUnitTopicLinkPDF
1Unit 1Development of India mathematics letter classesLink
2Unit 1A brief by biography of varameer and aryabhattLink
3Unit 1Link
4Unit 1Rank of matrixLink
5Unit 1Echelon and normal form of a matrixLink
6Unit 1Characteristics equations of a matrixLink
7Unit 1Eigen value eigen vectorLink
8Unit 2Cayley Hamilton theoremLink
9Unit 2Applications of cayley Hamilton theorem to find the inverse of matrixLink
10Unit 2Applications of matrix to solve a system of linear equationLink
11Unit 2Solving linear equation up to three unknownsLink
12Unit 2Link
13Unit 3Scalar and vector product of 3 and 4 vectorLink
14Unit 3Reciprocal vectorLink
15Unit 3Vector differential ltipnLink
16Unit 3Rule of differentiation Derivative of triple productLink
17Unit 3Link
18Unit 3Gradient,divergence and curlLink
19Unit 3Directional derivativesLink
20Unit 3Vector identitiesLink
21Unit 3Vector equationLink
22Unit 4Vector integrationLink
23Unit 4Gaus,Green Stock theorem and problem based on itLink
24Unit 5General equation of second degreeLink
25Unit 5Tracing of conicsLink
26Unit 5System of conicsLink
27Unit 5ConeLink
28Unit 5Equation of cone with given baseLink
29Unit 5Generators of coneLink
30Unit 5Conditions for 3 mutual perpendicular generatorsLink
31Unit 5Right circular coneLink
32Unit 5Equation of cylinder and its property right circular cylinder enveloping cylinderLink

Paper 2

S.NoUnitTopicLinkPDF
1Unit 1Development of Indian mathematics ancient and early classical periodLink
2Unit 1Brief biography of bhaskaracharya and MadhavaLink
3Unit 1Link
4Unit 1Leibniz theoremLink
5Unit 1Maclaurinn series expansionLink
6Unit 1Particle derivative of higher orderLink
7Unit 1Euler's theorem on homogeneous functionLink
8Unit 1Asymptotes of algebraic curveLink
9Unit 1Conditions of extensions of asymptoticLink
10Unit 1Parallel asymptotesLink
11Unit 1Asymptotes of polar curveLink
12Unit 2I Formula for radius of CurvatureLink
13Unit 2Curvature at originLink
14Unit 2Centre of CurvatureLink
15Unit 2Concavity and Convexity ofcurvesLink
16Unit 22 Point of lnflexion'Link
17Unit 2Singular point Multiple pointsLink
18Unit 2Curves represented by Cartesian equationLink
19Unit 2Curves represented by POLER equationLink
20Unit 3Integration of transcendental functionsLink
21Unit 3Introduction to Double and Triple IntegralLink
22Unit 33 Reduction formulaeLink
23Unit 3QuadratureLink
24Unit 3For Cartesian coordinatesLink
25Unit 3For Polar cooidinatesLink
26Unit 35 RectificationLink
27Unit 3Link
28Unit 4Linear di fferential equationsLink
29Unit 4Equations reducible to the linear formLink
30Unit 4Change of variablesLink
31Unit 4Exact differential equationsLink
32Unit 4First order and higher degree differential equationsLink
33Unit 4Equations solvable lor x, y and p Equations homogenous in x and yLink
34Unit 4C lairaut's equation Singular solutionsLink
35Unit 4Geometrical meaning of differential equationsLink
36Unit 4Onhogonal traiectoriesLink
37Unit 5Linear differential equation with constant coefficientsLink
38Unit 5Homogeneous linear ordinary differential equationsLink
39Unit 5Linear differential equations of second orderLink
40Unit 5Method of variation of parametersLink
41Unit 5Trarisforrnation of equations by changing the indeoendent variableLink
Scroll to Top